Light Induced Further Agglomeration of Metal Particles

نویسندگان

  • Yi Zhang
  • Claire Gu
  • Adam M. Schwartzberg
  • Shaowei Chen
  • Jin Z. Zhang
چکیده

The observation of an unusual light-induced agglomeration phenomenon that occurs besides the trapping of the gold nanoparticles aggregates (GNAs) has been observed. The observed agglomerate has a 60-100 μm donut-shaped metal microstructure with the rate of formation dependent on the laser power used. In this paper, the forces involved and the mechanism of this further agglomeration phenomenon are analyzed in detail. The observed trapping can partially be explained by a model including the optical radiation force and radiometric force. However, the lightinduced agglomeration cannot be explained by optical trapping alone as the size of the agglomerate is much greater than the waist of the Gaussion beam used in the optical trapping. Hydrodynamic drag force induced by the laser heating is also considered to play a role. Besides these forces, the mechanism of light-induced agglomeration is attributed to ion detachment from the surface of the nanoparticles/aggregates due to light illumination or heating. This is supported by the observation of reversible conductivity changes in the nanoparticle/aggregate solution upon laser illumination or direct heating. Light-induced agglomeration can be useful in the design and fabrication of microstructures from nanomaterials for various device applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on Agglomeration of Smoke Particle in Electric Field

The agglomeration phenomenon of the charged smoke particle has been investigated by the electricfluid mechanics and transport theory of external force field and depending on several simplifying assumptions the theoretical expression for the agglomeration rate of the smoke particles has been developed. In a model of electrostatic precipitator the agglomeration mechanism of charged particles has ...

متن کامل

Optical trapping and light-induced agglomeration of gold nanoparticle aggregates

This paper demonstrates the optical trapping of micron-sized gold nanoparticle aggregates GNAs with a TEM00 mode laser at 532 nm and reports the observation of an unusual light-induced agglomeration phenomenon that occurs besides the trapping of the GNAs. The observed agglomerate has a 60–100 m donut-shaped metal microstructure with the rate of formation dependent on the laser power used. Citra...

متن کامل

Effect of the pillar ligand on preventing agglomeration of ZnO nanoparticles prepared from Zn(II) metal-organic frameworks

Metal-Organic Frameworks (MOFs) represent a new class of highly porous materials. On this regard,  two nano porous metal-organic frameworks of [Zn2(1,4-bdc)2(H2O)2∙(DMF)2]n (1) and [Zn2(1,4-bdc)2(dabco)]·4DMF·1⁄2H2O (2), (1,4-bdc = benzene-1,4-dicarboxylate, dabco = 1,4-diaza...

متن کامل

Enhanced optical absorption in organic solar cells using metal nano particles

In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...

متن کامل

Enhanced optical absorption in organic solar cells using metal nano particles

In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006